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Electron energy loss in multilayered slabs: 11. Parallel 
incidence 
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Physics Depanment. The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 

Received 28 July 1994 

Abtraci. This paper develops the dielectric theory ofenergy loss. including retardation effects. 
for electrons travelling parallel to the interfaces of a stratified slab. A transfer mabix recu~~ence 
relation i s  intxoduced to implement the boundary conditions at surfaces and interfaces. 'Ibis 
recurrence relation is solved exac~ly to provide closed formulae for the Hertz vector. the 
dispenion relation and the energy-loss probability. valid for my position of the beam and any 
number of layerr. The non-retarded ltmits of these expressions are also examined and compared 
with the results of a simpler calculation based directly on Poisson's equation. Ow final results 
are illusIraled by numerical calculations applied to Al/Al*O) multilayers and a InSblGaP bilayer. 

1. Introduction 

In a companion paper (referred to here as paper I) we developed the dielectric theory 
of electron energy loss for normal incidence on a multilayered slab, obtaining compact 
expressions for the Hertz vector, the dispersion relation and the energy-loss spectrum [l]. 
In this paper, we carry out similar calculations for parallel incidence. In some respects, this 
is a more complicated task than for normal incidence because we now have to deal with 
a 4 x 4 transfer matrix and allow for the beam to be in any layer of the slab or in either 
of the two external regions. In compensation, however, the source terms do not vary from 
layer to layer and the work done by the beam can be calculated without summing over 
layers. So far as possible, we will adopt the notation of paper I. In particular, we will reuse 
the variables U, fi, 4j. h;, Cji, Dji, Eji and F;i, and make extensive use of dispersion 
brackets. The reader is referred to paper I for definitions of these terms. 

Parallel incidence has been extensively studied for single interfaces and homogeneous 
slabs. Howie and co-workers [2,3,4] have calculated the energy losses in the neighbourhood 
of an interface between two bulk media. They showed [4] that there can be significant 
differences between spectra calculated using the retarded and electrostatic formalisms, 
especially if the beam is near the interface. Parker [5, 61 has extended the retarded 
calculations to a single slab, obtaining separate formulae for internal and external beams. 
In this paper we shall consider parallel incidence on a multilayered slab composed of any 
finite number of layers. The aim is to obtain a single unified formula for the energy-loss 
spect" that applies no matter where the beam is or how many layers the slab contains. 

The paper is organized as follows. In section 2 we state the problem and develop 
a transfer matrix recurrence relation for the Hertz vector which incorporates the relevant 
boundary conditions. Section 3 gives a useful result for products of transfer matrices, 
needed for the remainder of our analysis. In sections 4 and 5 we obtain closed formulae for 
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the dispersion relation, the Hertz vector and the semiclassical energy-loss spectrum. The 
symmetries of these results are examined in section 6, and special cases compared with 
previously established formulae. In particular, we examine the non-retarded limit of our 
answers and show that they agree with the results of a direct calculation based on Poisson’s 
equation (included in an appendix). Section 7 illustrates some consequences of the theory by 
carrying out numerical calculations for AI/A1203 multilayers and a semiconductor bilayer. 
Finally, section 8 summarizes our findings and provides an outlook to future work. 

As in paper I, we can only give an outline of our derivations here; readers interested 
in following through the proofs will find further details in [7] and 181. On the other hand, 
readers who wish only to use our final results may wish to concentrate on equations (IZ), 
(13), (19) and (ZO), bearing in mind that section 3 of paper I and section 3 of this paper 
contain definitions that are needed to interpret these formulae. 
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( x .  y .  z ,  f )  to (kz, k,, z ,  w )  and write the Fourier-transformed Hertz vector in region j as 

rI")(k,,k,,z,o) = l?I'j)G(k,u-w) 

where f i 1  is a continuous vector function whose x-component has a discontinuous derivative 
at the z-coordinate of the beam: 

with 
nQv 1 
10eo q m c m  

Then Maxwell's equations are satisfied by taking 

Am = --. 

T fp = + A - ~ - W ,  0, + B7e-W) 
I I 

where the coefficients A," and BP depend on w, k, = w j u ,  k, and, of course, on the region 
j and the beam region m. The discontinuity in slope at z = zb is dealt with by allowing the 
coefficients A;, in subregion m' to differ from the coefficients A;,, in subregion m". Since 
the boundary conditions at infinity require four of the coefficients to vanish, there remain 
4n + 6 undetermined coefficients. These coefficients can be found by supplementing the 
4n + 4 linear equations that describe the continuity of EA, E,, H, and H, at the n + 1 
interfaces with the two equations that describe the continuity of fix and the discontinuity of 
dfi,/dz at z = zb. In principle, it is possible to solve this system of 4n+6 equations directly 
using computer algebra. Our early work followed this direct approach and gave results 
for a single slab consistent with [SI. In practice, however, such calculations soon become 
unwieldy and it is far better to describe the boundary conditions in terms of a transfer matrix 
recurrence relation. In order to express this recurrence relation in the simplest possible form 
we rescale the Hertz vector coefficients as follows: 

a? = A?eaW-'/A, 

@? = BPeaW,-'/(ik,A,) 

with a; = A;/Am 

with 00" = B;j(ikxhm) 
J J  

I 1  

and then define the coefficient vectors 
T 

aj = (a:, a;) 

Pj = (0;. 0;) 

cj = (a:. a;, s;, 0;) 

T 

T 

As in the normal calculation, we use the variables f, = eqJaj (with fo = fn+l = 1) and 
hYj = q;cl + oqjc,. In the case of parallel incidence, it is also convenient to introduce the 
variable - 

hG=qi+aq j .  

Finally, we define the source vector 
T 

G, = (gk, -&, 0, 0) 
where 
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The boundary conditions at the interface between jth and ( j  + 1)th regions (or subregions) 
then lead to the recurrence relation 

J P R Bolton and M Chen 

Cj+l = T( j+ ' , j ) (C j  + GjmzG,) 1 
where the 4 x 4 transfer matrix is given by 

with 
T(m" .m' )  = 1. 

It is easy to write down a formal solution to this recurrence relation: 

cj = T'j"C0 + T(J"Gm 

where the generalized transfer matrix TUi) is defined by the product 

with successive matrices ordered from right to left. In principle, this equation can be used 
to express the coefficients in region 0 in terms of those in region n + 1. The boundary 
conditions at infinity then give 

TI (""")a: I + T r l , m ) g ;  - T,(l"'.m)g+ m = 0 (5)  

(6) 
allowing us to determine the coefficients in region 0. Equations (2) or (4) then generate 
all the other coefficients. Such a procedure can be carried through numerically without 
difficulty but this approach offers little insight into the nature of the solutions or their 
relationship to previously derived results for bulk, single interfaces and single slabs. As in 
the case of normal incidence we therefore prefer to proceed analytically, with the aim of 
obtaining closed Formulae for the quantities of interest 

(n+l .O)  + (ntl .0)  + (ntl.mlg;-T;;+t.m) + 
'31 + BO + g, = o  

3. The generalized transfer matrix 

An important step in our solution is to find a compact expression for the generalized transfer 
matrix in terms of dispersion brackets. We will reuse the dispersion brackets [ C j i ] ,  [D , ; ] ,  
[E,;] and [F,i] of paper I. Also here, and throughout this paper, we use a convenient 
shorthand: for any quantity X ,  we extend the tilde notatiotof equation ( I ) ,  so f is defined 
by replacing each h,9 in X by the corresponding variable hYi. For example, 

[&I] = hhf$;1f? + &z;&f; = (43 + qz)f&?z + 4i)f: + (43 - M q z  - 41)f;. 
Using this notation, we find that the generalized transfer matrix has a block triangular form: 

- 
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where 

and, as in paper 1: 

The matrix OiJ+'.') is more troublesome. In our early work ([7]) we obtained a closed-form 
expression for OiJ+'.') which involved complicated sums over many different dispersion 
brackets. Recently, however, we have discovered a much simpler result: 

This identity (proved in [SI) will allow us to calculate many quantities of physical interest. 

4. The dispersion relation 

Starting from equations (5) and (6). with the source terms set equal to zero, we obtain the 
dispersion relation 

in+l.O)T(n+l.O) - 
TI I 33 - .  

Equations (7) and (IO) then allow us to write this dispersion relation in the explicit form 

The solutions are of two types. We have Eroved that the [Cn0] = 0 solutions are TM 
modes, with H, = 0 everywhere, while the [Cno] = 0 solutions are TE modes, with EL = 0 
everywhere [SI. Both types of mode are divergenceless (V .E  = 0). However, whereas the 
TE interface modes are transverse (with k,E, + k,E, = 0), the TM interface modes are not 
transverse and have E , / E ,  = kx /k , .  Comparison with paper I shows that the TE modes 
are new: they are not excited by normal incidence but, at this stage, cannot be ruled out 
for parallel incidence. In section 7 we will revisit this poinl and show that the dispersion 
curves of the E modes are restricted to regions of k - o  space where they are difficult to 
excite, even in the case of parallel incidence. The TM modes will continue to be of major 
interest. 

For symmetrical slabs with 2 j +  1 layers, the dispersion relation can be further factorized 
(cf paper I) to give 

-1 (13) 

where 

~ , " o  = [c~o]  f j + l  + [ ~ j o ]  

and, for both TM and TE modes, + superscripts label solutions with a symmetric charge 
distribution and - superscripts label solutions with an antisymmetric charge distribution. 
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Special cases of our dispersion relation agree with established results for low values 
of n. For example, in the case of a single slab surrounded by a homogeneous medium, 
equation (13) can be used with j = O  to obtain 

((4061 + ql€o)zf: - (4061 - 4l60)2} ((SO + 4 2 f :  - (40 - 4 # }  = 0. 
In this case, the solutions split into the TM modes 

4061 + 4160 

4061 - 4160 

- - - fe-vP' ~~ 

40 + 41 
40 - 41 

and the modes 

previously given in [9] and [IO]. 
Also, substituting n = 0 in equation (12) gives the dispersion relation 

(41€0 + 406I)(ql + 40) = 0 
which is again of the expected form for a system with n + 1 interfaces (a single interface 
in this case). Equations (12) and (13) provide a natural generalization of these well-known 
results to the more complicated geometry of multilayers. 

5. The Hertz vector and energy loss 

Before stating ow solutions for the Hertz vector, we need to to introduce some new variables: 

Y; = [Cji] g; + Q [Dji]  s; 
Z; [cjz] g:+I + 0 [ ~ j i ]  g;+i 

and 
i 

pij = n ( 2 4 k f k ) .  
k=r 

In terms of these variables, and using equations (4), (5) and (6), together with our expression 
for the generalized transfer matrix, we find that [8], for regions before the beam layer (Le 
for j < m'), 

and 

Similarly, for regions beyond the beam layer (i.e. for j m") we obtain 

and 
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These explicit solutions for the Hertz vector lead to a closed-form semiclassical expression 
for the energy-loss specr". This is obtained by calculating the work done on the incoming 
electron by the electric field created by its polarized surroundings. "he semiclassical energy- 
loss probability then follows by expressing the total energy loss in terms of the transfer of 
individual quanta of energy fro. A straightforward calculation shows that for an n-layered 
slab, with the beam in region m, the energy-loss probability is described by the function 

where 

Here, the normalization has been chosen in such a way that the work done per unit path 
length is 

where k, is an appropriate wavevector cut-off (see paper I) and dl@w)/dx is the scattering 
probability per unit path length, per unit energy range. 

It makes no difference, in equation (lS), whether one chooses to use the coefficients 
in the "-subregion (equations (14) and (15)) or the coefficients in the m"-subregion 
(equations (16) and (17)). Whichever choice is made, our solution for the Hertz vector 
leads to the following explicit expression for the energy-loss function: 

"his equation is the main result of our analysis. It provides a remarkably simple formula 
for the semiclassical energy-loss spectrum, which is valid for all choices of beam region m, 
beam position zb ,  number of layers n, layer thicknesses ({a,]) and local dielectric functions 
( { E , ) ) .  The variable w in equation (19) is, of course, real, while the dispersion relations 
[C.O] = 0 and [&I = 0 are in general only satisfied for complex frequencies. Nevertheless, 
i t  is clear from equations (19) and (12) that the real frequencies for which the dispersion 
relation is close to to being satisfied (over a wide range of attainable k-values) are likely to 
be those for which there is a high probability of energy loss. 

Unlike the case of normal incidence, it does not seem to be possible to express equation 
(19) as a quadratic form in the variables ( ~ k + ,  - Q). It is possible to re-express x:) as a 
sum of terms that are linear in ( 6 k + ]  - G ~ ) ;  however, the resulting expression is much more 
complicated than equation (19) and appears to offer no advantages, so discussion of this 
representation is confined to [7] and [SI. 

6. Symmetries and special cases 

In this section we establish some symmetry properties of equation (19), explore special cases 
and examine the non-retarded (electrostatic) limit. All these may be regarded as checks of 
our result. 



3396 

6.1. Symmetries 

As in paper I, we introduce five operators: 

J P R Bolton and M Chen 

(i) 3 reverses the sign of U; 
(ii) Iw reverses the sign of o; 
(iii) reverses the sign of q k  but leaves qj unchanged for j # k; 
(iv) s reverses the labelling of the regions so that k -+ n + 1 - k; 
(v) &.k+l causes two neighbouring regions k and k + 1 to coalesce. 

Inspection of equation (19) immediately confirms that 

The transformation @k has a non-trivial effect on the individual terms of equation (19). For 
example, 

t ( X f ) )  = Xp” and t(,yf)) = xf). 

-<z-l,offf if 0 c k 6 m - 1 
A 

05,-1.0 i f k = m  

i n v  if k 2 m + 1. 
Pk(<;-l,o) = - 

5,-1.0 

Nevertheless, it is possible to show that 

Pk(xr) )  = x:) 

&Y&) = C;-?,,,ofn+~-m and &~;-I,o) ~L{+t-m/fn+~-m, 

for all k. 

The transformation S gives 

When these results are substituted in equation (19). we find that 
4 x 9  = xi+]-, ”) 

as expected. 
Finally, we can consider the effect of allowing two neighbouring regions to coalesce. 

This corresponds to making the replacements ck+~ -+ +, q k + 1  -+ qk etc, ?.ax -+ ak and 
then renumbering the layers j -+ j - I for j 2 k. When this transformation is applied to 
equation (19). we obtain the anticipated result: 

6.2. Symmetrical slabs 

Even if we have a slab that is symmetrical about its central layer, the energy-loss function 
for parallel incidence does not simplify beyond equation (19) unless the beam is in the 
middle of the central layer. This special case will now be explored. 

We consider a slab of 2m - 1 layers, symmetrical about the central mth layer, with a 
central beam. In this case, 

g,’ = f;!= and f n + ~ - m  = fm 
112 -“ and V,,=fm Lm-l.~. 112 0. 

Recalling equation (13), the energy-loss function then simplifies to 
f-1.0 = (1/fm )Lm-i,o 
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which suggests that interfacial peaks in the energy-loss spectrum may be associated with 
either symmetric TM modes or antisymmetric TE modes. As mentioned earlier, the TE modes 
are difficult to excite so, in practice, the symmetric TM modes form the dominant interfacial 
features in the spectrum (see section 7). 

6.3. Special cases 

Next, we compare our energy-loss formula with known results for parallel incidence, 
beginning with a single slab. On substituting n = 1 and m = 0 in equation (19) and 
rearranging we recover (a compact form of) Parker's formula [5] for an external beam: 

Substituting n = 1 and m = 2 gives the same answer, but with the replacements 80" U g;", 
€0 U €2, qo U q 2  (and hence [ D ~ o ]  U - [E& as expected from symmetry. Moreover, 
substituting n = 1 and m = 1 into equation (19) gives a result consistent with Parker's 
formula for an internal beam ( [ 5 ] ) .  

Equation (19) can even be used where no slab is present. Since the number of interfaces 
is n + 1, the case of a single interface corresponds to setting n = 0. If we also set m = 0. 
equation (19) gives 

which agrees with the standard formula for a relativistic interface [6, 41. Substituting n = 0 
and m = 1 in equation (19) gives the same answer, but with the replacements EO c, 61, 

qo c, q1 and g; c, g;", as expected from symmetry. 
Finally, we can consider the case of a bulk medium with no interfaces, which 

corresponds to n = -1. Substituting n = - 1 and m = 0 into equation (19) gives 

which, after integrating over the azimuthal angle, gives a result equivalent to that of Landau 
and Lifshitz [ I  11. 

6.4. The non-retarded limit 

The non-retarded limit of equation (19) is obtained by letting u / c  + 0 and o / c k  -+ 0. The 
result is described most conveniently in terms of the variables 

h?. = <j + U E ~  I' 
" "  

= e 4  with fo = f0+, = 1 
with i; = eok2b. 2; = enk(ia-i*-i) 

We adopt a convention analogous to that previously used for the tilde accent: any qyantity 
k is defined in the same way as its cousin X ,  but with hYz, fi and gy replaced by hyi, fj 
and 5. Using these definitions, we find that 
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In the appendix, we carry out a d u s t  calculation of the non-retarded energy-loss probability, 
using methods similar to those described in section 4, but based on Poisson's equation for 
the electrostatic potential. Equation (21) agrees with this electrostatic result. 

7. Calculated energy-loss spectra 

This section uses the (retarded) formulae developed above to calculate energy-loss spectra 
for a selection of model and real systems. We concentrate on two main issues: the effect 
of changing the number of layers and the effect of changing the position of the beam. As 
in the case of normal incidence, we consider incident electrons of energy I00 keV and 
introduce a wavevector cut-off k, = 15 nm-' in all integrals over k,. 

J P R Bolton~and M Chen 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

electron energy-loss (ev) 
Figure 2. Scattering probability per unit path length per unit energy range, dr(ho)/dx. for 
parallel incidence in I h e  centre of AI/AIzOI multilayen. The centml layer is always Al. the 
outer layers AI203 and each layer is 3 nm thick. The scarrering probabilily is shown for slabs 
composed of three layers (solid line), seven layers (dotted line), and eleven layers (dashed line). 

Our first example discusses symmetrical multilayered slabs of AI and A1203, containing 
various numbers of layers. In each case, the central layer is AI and the outer layers are 
A1203. The dielectric functions for these materials are represented by the same models as 
in paper I. Figure 2 shows the scattering probability per unit path length per unit energy 
range for symmetrical AljAlzOe multilayers of three, seven and eleven layers. Each layer 
is 3 nm thick and the beam is in the middle of the central AI layer. The main loss feature in 
all cases is, of course, the AI bulk plasmon at I5 eV. Because of the choice of geometry and 
dielectric functions, there are no surface plasmons due to AI or A1203. Cherenkov radiation 
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is also suppressed below 15 eV because the dielectric function of AI has a negative real 
part in this region. The remaining peaks are associated with interfacial plasmons. They 
fall into two main groups: peaks below 7 eV and peaks above 10 eV. Note that the upper 
peak is missing in the three-layer case and the positions of the peaks shift as the number 
of layers increases. 

Figure 3 provides more detail of our solutions by plotting d’P/d(hw)dk,dx against 
k,  and Rw for the three, seven and eleven-layer slabs of figure 2. In each case, scattering 
by the AI plasmon produces a ridge at 15 eV. The remaining ridges are due to interface 
modes. We have solved the dispersion relation (equation (13)) for the systems shown in 
figure 3 and found that the interfacial ridges correspond closely ta the dispersion curves for 
symmetric TM modes. As predicted by equation (ZO), the antisymmetric TM modes are not 
excited because the slab is symmetrical and the beam occupies an exactly central position. 
Our solutions to the dispersion relation show that the seven- and eleven-layer systems have 
symmetric TM modes at both ‘low’ energy (<7 eV)) and ‘high’ energy (>lo eV), but 
the three-layer system has only one symmetric TM mode, which occurs in the low-energy 
region (cf. [ 121); this explains the missing peak in the three-layer slab. The shift in the 
peaks reflects the increasing complexity of mode structure that arises from coupling between 
different interfaces. 

Figure 3 shows no trace of a contribution due to TE modes. This can again be explained 
in terms of the dispersion relation for these modes. Although TE modes can be found as 
functions of k and w. a numerical search based on equation (12) reveals no TE modes 
in the region k z w / u .  (This is related to the transverse nature of these modes, which 
prevents them from crossing the light cone o = ck.)  As our energy-loss formula involves 
the substitution k,  + w / u ,  there is no value of k,  that produces significant scattering by 
the TE modes. 

Figure 4 shows the effect of moving the beam away from the central position in the case 
of the seven-layer A1/A1203 slab. This figure shows how dI(hw)/dr varies as the beam 
position is moved from the middle of the central AI layer to the first AI/A1203 interface. 
As might be expected, the structure in the interfacial modes becomes more evident as the 
beam approaches the interface, with both symmetric and antisymmetric TM modes being 
excited. However, the full structure only emerges when the beam (or part of it) is within a 
few A of the interface! 

As explained in paper I, many 
semiconductors have dielectric functions that are broadly similar over the energy range of 
interest, making it difficult to observe interfacial plasmons at semiconductorhemiconductor 
boundaries. In figure 5 we have deliberately chosen two semiconductors that are fairly 
dissimilar. The graph shows dl(hw)/dr as a function of beam position and energy loss 
for a two-layered slab of InSb (from 0 nm to 5 nm) and GaP (from 5 nm to 10 nm), with 
dielectric functions taken from [13]. The bulk plasmons for these two materials occur at 
11.8 eV and 15.9 eV and surface plasmons are also visible. The main interest here, however, 
is the fact that an interfacial plasmon can be identified at about 13.4 eV, consistent with 
our feeling that parallel incidence gives the best chance of observing interfacial modes in 
difficult cases. 

Finally, we consider a semiconductor bilayer. 

8. Conclusions and outlook 

In this paper we have extended the programme of paper I to deal with parallel incidence on 
a multilayered slab, obtaining closed formulae for the dispersion relation and the energy-loss 
spectrum. The dispersion bracket algebra, introduced in the context of normal incidence, has 



~ 

3400 J P R Bolton and M Chen 

Figure 3. Three-dimensional p l o ~  of d3P/d(hw)  dk, dr against kl and hw for the AI/AIIO, 
muitdayen of figure 1. with the beam in the centre of the slab. From top to bonom. the plou 
refer to lhree-. seven- and eleven-layer systems. 
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Figure 4. A three-dimensional plot of  scattering probability per mil path length per unit energy 
range. (df(hm)/dr), agaist energy and bwn position for the seven-layer AljA1209 slab. 

Figure 5. A three-dimensional plot of scattering probability per unit path length per unit energy 
range, d l  @w)/dx, against energy and beam position for a InSb/GaP double film. lnSb extends 
from 0 nm to 5 nm and GaP from 5 nm to 10 nm. 

tumed out to be valuable in the case of parallel incidence as well. Moreover, as expected, it 
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is easier to observe surface and interface plasmons with parallel incidence than with normal 
incidence. The type of calculations outlined here can be extended to other cases. We are 
currently using computer algebra to analyse energy loss in anisotropic slabs and in the case 
of oblique incidence on multilayered slabs. The oblique calculation combines the difficulties 
of parallel incidence (the same 4 x 4 transfer mauix) with those of normal incidence (source 
terms which vary from layer to layer and the need to sum over regions), but we hope to 
solve these problems in the near future. 

Appendix A. The non-retarded calculation 

In the electrostatic limit, the problem reduces to solving Poisson's equation subject to 
appropriate boundary conditions. The x ,  y ,  and I Fourier-transformed solution for the 
potential in the j t h  region can be expressed as 

where 
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,#. j -6. - j S ( k z v - ~ )  

6.  1 -  - ,Qekz + A r e - k Z  (AI) 
and, as explained previously, the accent " is used to distinguish non-retarded quantities 
from similar ones used in the normal and parallel retarded calculations. The coefficients 
A; are determined from the boundary conditions at surfaces and interfaces, together with 
two supplementary conditions at the level of the beam: 

where 

. - --- i; ZQ 

2: = "pSee"XZI-l , /A,,, - with$: =i;/i,. 

m -  
kc& 

We rescale the coefficients as follows: 

I 

Then, applying the boundary conditions at j t h  interface we obtain a transfer matrix 
recurrence relation of the form 

where LTi, and 2; are defined in section 6.4.~ 
This recurrence relation leads to fie dispersion relation 

which agrees with the classical limit of equation (12). (There is no contribution from the 
"E modes in the electrostatic limit.) 

By repeatedly applying the recurrence relation from external region 0 to external region 
n + 1, and using the boundary conditions at infinity, we obtain 2:. Then, applying the 
recurrence relation from region 0 to region m'. we obtain the beam layer coefficients in the 
form 
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The transfer matrix recurrence relation also gives the coefficients on the other side of the 
beam: 

The scattering probability per unit path length can finally be expressed as 

where 

in agreement with equation (21). 
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